
The collapse transition of linear polymers on fractal lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 199

(http://iopscience.iop.org/0305-4470/20/1/028)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 14:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 20 (1987) 199-213. Printed in the UK 

The collapse transition of linear polymers on fractal lattices 

D Dhar t  and J Vannimenust 
+ Laboratoire de Physique Theorique et Hautes Energies, Universite Pierre et Marie Curie, 
Tour 16, 4 place Jussieu, 75230 Paris Ctdex 05, France and Tata Institute of Fundamental 
Research, Homi Bhabha Road, Bombay 400005, India 
$ Groupe de Physique des Solides de I'Ecole Normale Superieure, 24 rue Lhomond, 75231 
Paris Cedex 05, France 

Received 2 December 1985, in final form 27 March 1986 

Abstract. We show that for linear polymers a collapse transition exists on several fractal 
lattices and obtain exact results for the critical exponents at this transition. A 'rod-like' 
phase is found in some cases at intermediate temperatures, between the swollen phase and 
the collapsed phase. We introduce infinitesimal recursion relations with correlation function 
rescaling as the formal limit of a class of fractals, which give a better approximation to 
Euclidean ZD lattices. The gyration radius exponent at the transition temperature lies in 
the range v, = 0.546* 0.010, in good agreement with a recent transfer matrix calculation. 
The possible relevance of anisotropy at the collapse transition is discussed. 

1. Introduction 

Flexible linear polymers in very dilute solution in a poor solvent can undergo a collapse 
transition, where an individual polymer chain shrinks from a swollen state to a globule 
state when the temperature is lowered (see de Gennes (1979) for a general introduction). 
Much work has been devoted to the study of this transition because of its experimental 
importance and its possible relevance to protein folding. On the theoretical side, this 
transition corresponds, in the limit of infinite chain length, to a tricritical point, by 
analogy with magnetic systems, and renormalisation group methods give predictions 
differing from those of mean-field-type theories (Stephen 1975, Duplantier 1982, 1986, 
Kholodenko and Freed 1984). 

At the transition temperature T, for the infinite chain, there is a compensation 
between the non-crossing constraint that tends to swell the polymer and  the short-range 
attractions that favour a dense state. In  the classical picture, the polymer chain becomes 
ideal (Gaussian) on large length scales and the radius of gyration exponent is v, = f, 
as for a purely random walk, independent of the space dimension d. Dimensional 
arguments show that the upper critical dimension is d, = 3 for this transition, with the 
consequence that the expression for the radius of gyration contains additional logarith- 
mic factors in three dimensions. 

The two-dimensional case is interesting as one expects the collapse transition to 
occur with non-classical values for the critical exponents. A recent conjecture relates 
the exponent v, to that of an  infinitely growing self-avoiding walk ( S A W )  and also to 
the exponents describing the geometry of percolation clusters (Coniglio et al 1985). 
Exponents have been determined by real space renormalisation (Marquse and Deutch 
1981), Monte Carlo simulations (Baumgartner 1982) and transfer matrix calculations 
(Derrida and Saleur 1985, Saleur 1985). It is also feasible to study experimentally 
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two-dimensional polymer systems (Vilanove and Rondelez 1980, Takahashi et a1 1983, 
Granick 1985). 

No complete solution of self-avoiding walks with interactions on regular lattices 
is known. It is therefore instructive to study the problem on some fractal lattices where 
exact results can be obtained. In  general, one can expect a collapse transition with 
non-ideal behaviour to exist for interacting SAW on fractal lattices, if their effective 
dimension is less than three. In the present paper, we elaborate on our previous studies 
of self-avoiding walks on fractal lattices (Dhar  1978, hereafter referred to as I ,  Rammal 
er a1 1984) and  show that a collapse transition indeed exists on several lattices of 
Hausdorff dimension Df = 2.  The transition does not occur on the two-dimensional 
Sierpinski gasket studied earlier by Klein and  Seitz (1984) because of its low ramification 
number. On the fractals studied here, exact recursion relations can be written for the 
generating function of the polymer and their fixed points correspond to the different 
phases of the chain. The eigenvalues of the recursion relations at these fixed points 
yield the gyration radius exponent v, and the specific heat exponent a at the collapse 
transition. In  particular, these exponents can be obtained in closed form on the 3~ 

Sierpinski gasket, thus providing a simple example for an  exactly solved model showing 
a tricritical point, which may be of pedagogical value. 

Our exact calculations show that the phenomenon of polymer collapse can be 
rather intricate on some fractal lattices. On the modified rectangular lattice ( M R L ) ,  a 
fractal introduced in Dhar (19771, we find an intermediate 'rod-like' phase between 
the swollen phase and the collapsed one. In  an effort to understand this unexpected 
feature, we study a variant with infinitesimal recursion relations, analogous to a 
Migdal-Kadanoff-type renormalisation, which should give an approximate description 
of a standard two-dimensional system. We find in this case a normal collapse transition, 
but anisotropy in the interactions becomes a relevant perturbation precisely at the 
transition point, which is therefore multicritical. 

2. The Sierpinski gasket 

The simplest fractal lattice for which the interacting self-avoiding walk may be studied 
is the Sierpinski gasket, which has now become a standard system for the discussion 
of many statistical problems. The attractive S A W  on this lattice have been studied 
earlier by Klein and Seitz (1984) who found that on this lattice there is no collapse 
transition. We consider below a slightly different fractal, the truncated 3-simplex lattice 
(Dhar 1977, 19781, in order to introduce two very useful and general reductions. The 
3-simplex (figure 1 )  has been shown to belong to the same universality class as the 
Sierpinski gasket (Rammal et a1 1984) and i t  has the advantage of giving simpler 
equations for the present problem. 

The weight of a walk having n steps and  r nearest neighbours is x n w r .  Following 
I, we define B'"(x,  w )  as the sum over all walk configurations entering through one 
corner vertex of an rth order triangle and leaving via a second corner vertex. We also 
define B',"(x, w )  as the restricted sum over all walks entering one vertex of the rth 
order triangle and leaving via the second vertex having visited the third corner vertex 
as well (figure 2 ) .  The generating function of closed loops is a function of x and w 
given by 

P ( x ,  w )  = 13- ' [B" ' (x ,  w ) ] ' .  (2.1) 
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Figure 1.  A self-avoiding polbmer (-1 on a 3-simplex lattice at the third stage of 
construction ( r  = 3) .  The attractive interactions between neighbouring sites are  denoted 
by broken lines. 

Figure 2. Diagrammatic representation of the weights B " '  and  B i r ' .  The configuration 
shown in ( c )  contributes a term wB"' [E ' ," ] '  to E'"" on the 3-simplex lattice (no te  that 
E"' contains B:") .  
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(2.3) 

noting that B contains BI with our notation and that one has to avoid double counting 
of configurations. The initial weights are 

assigning, as in I, a weight x to every vertex that the walk passes through (and a weight 
x1'2 to each of the endpoints of the chain). 

These equations are exact for the 3-simplex lattice. We define new variables 
- (U' - l ) "2B\r '  and the recursion equations become g l r )  - 

(2.6) B ( r t l l  = ~ l r ) ' +  B'rJ'+ B ( r ) j ; r ) '  

5 ; r + 1 1  = g \ r ) [ B ( r l ' +  5 ; r ) 2 3 .  (2.7) 

Thus the weight factor ( w  - 1) can be absorbed in the definition of variables of recursion 
and does not appear explicitly in the recursion equations. This is the first reduction. 

Also, from equations (2.6) and (2.7), we have 

< B'". (2.5) 5;rt I B ( r T l )  

Thus, if €3''' stays finite as r tends to infinity, then must tend to zero. Then these 
variables drop out of the recursion equations, and the recursion equations for B'" are 
the same as in the non-attractive case. This is the second reduction. This implies that, 
to find the fixed points and critical exponents in the case of walks with interactions, 
an analysis of recursion equations for the non-attractive walks is sufficient. 

The physical argument used to understand this phenomenon is the following. By 
universality, one expects that a SAW with attractive interactions only on bonds lying 
within first-order triangles will have the same phase transition as one with attractive 
interactions at all bonds. But for the former problem, the recursion equations are the 
same as for the non-attractive case. The attraction strength w appears only in the 
initial values of the weights (equations (2.4) and (2.5)). These are needed to determine 
the location of critical points and the phase boundaries but not to determine the 
qualitative phase diagram and critical exponents. 

In this specific case, as B;" tends to zero for large r, equation (3.6) reduces to 

(2.9) B('+" = B( ' ) '+  B")' 

This equation has only one non-trivial positive real fixed point B* = (d5 - 1) /2  corre- 
sponding to the swollen phase of the chain. Thus, we find no collapsed phase, in 
agreement with the result of Klein and Seitz (1984). 

3. The three-dimensional Sierpinski gasket 

In order to get a collapsed phase, we have to consider a lattice with higher ramification 
number to allow for extended contact between different segments of the chain. The 



Collapse transition of polymers on fractal lattices 203 

ramification number of the three-dimensional Sierpinski gasket is four and we show 
below that it is sufficient to ensure the existence of a collapsed phase. The 3~ gasket 
has a self-similar tetrahedral structure which generalises the triangular structure of the 
ZD gasket. It is in the same universality class as the truncated 4-simplex lattice (Dhar 
1977, 1978) and here we restrict our attention to the 4-simplex, which gives simpler 
equations. The recursion relations are, in that case, 

A'+2A3+2A4+4A3B+6AZB2 (3.1) A(r+l l  = 

A4+ 4A'B + 22B4 (3.2) 

where A'" (respectively B ( I ) )  is the partial generating function for chains going once 
(twice) through an rth order tetrahedron (figure 3). We restrict the attractive interaction 
to bonds within the first-order gasket. Then the starting values of these weights are 

Blr+ll = 

A ( ' ) = x * + ~ x ~ w + ~ x ~ w ~  (3.3) 

B"' = x4w4. (3.4) 
Equations (3.1) and (3.2) have three non-trivial positive real fixed points. 
(i) The fixed point (A* ,  B*)  = (0.4294. . . ,0.049 98 . . .), corresponding to the swol- 

len state of the chain. The end-to-end distance for a chain of N steps in this phase 
varies as N "  with v = 0.7294.. . . For x = x,(w), this fixed point is reached for all 
w < w, = 2+  31'4 = 3.316 . . . . 

(ii) The fixed point (A* ,  B*) = (0, 22''3). Linearising recursion relations about this 
fixed point, we find the largest eigenvalue A I  =4,  corresponding to v = l /Df=i. This 
phase therefore has a finite density of monomers per site and is the collapsed phase. 
For all w > w, and x = x,( w), the recursion equations iterate to this fixed point. 

Figure3. Diagrams defining the weights A"' and E"'  for the 3D Sierpinski gasket (or 
4-simplex lattice). The particular configuration shown in projection gives a contribution 
A"JjB1'l to A ' " ! ) ,  
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( i i i )  I f  w = w, and x = x,( w,), then the equations (3.1) and (3.2) remain at the fixed 
points ( A * ,  B*) = (i, 4). The linearised renormalisation transformation near this fixed 
point has both eigenvalues greater than 1. We get A ,  =%, A ?  =?. This is a tricritical 
point, the third relevant eigenvalue being the 'magnetic field' scaling eigenvalue 
corresponding to the renormalisation of the endpoints of chains. 

The behaviour of thermodynamic quantities near this transition, which corresponds 
to the infinite-chain 6' temperature, can be determined by arguments similar to those 
of Derrida and Herrmann (1983) in their discussion of the collapse of branched 
polymers. One finds that the specific heat of the polymer chain diverges as Iwr - w J C r  
with a = 2 - (log A ,/log A > )  = 0.360 27, and the thermal correlation length diverges as 
1 w - w,/-"' where v 2  = log 2/log A 2  = 0.8680. At the transition the end-to-end length of 
the chain scales as N "  with v, = log 2/log A ,  = 0.529 39. In  the compact phase near 
the critical temperature, the average density of the polymer vanishes as ( w  - w,)@ with 

The fact that the tricritical fixed point (4, f )  and its eigenvalues can be obtained in 
closed form is a pleasant surprise. I t  can also be used to study the specific heat near 
the transition in detail and determine the region where the asymptotic form Iw- w J U  
is valid. Numerically, one finds that 1w- w,1 has to be as small as 10-4-10-5 to obtain, 
on a log-log plot, a value of a within less than 1O0/o of the exact value. 

/? = ~ 2 ( 2  - V I )  0.096 38 . . . . 

4. The modified rectangular lattice (MRL) 

This lattice has a self-similar rectangular structure (figure 4) and its fractal dimension 
D f = 2  is equal to the space dimension, but i t  has interesting properties, in particular 
for self-avoiding walks (Dhar 1977, 1978). In  this case, the number of variables in the 

8 1 "  l r l  p r l  

i b l  
Figure4. ( a )  Modified rectangular lattice at the fifth order of construction. ( 6 )  Diagrams 
representing the restricted partition functions for the Lariaus ways the polymer can cross 
the rth order  rectangle. 
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recursion equations is larger and their analysis much more complicated. The non- 
attractive case involves recursions in nine variables for a complete treatment. To 
describe interacting walks, we have to introduce additional variables. For example, 
to describe closed loops it is necessary to introduce additional weights A',", B: r ' ,  C\r ' ,  
AY),  Bkr',  Cir' ,  where the subscript l ( 2 )  indicates a restricted summation over configur- 
ations where l ( 2 )  extra corner sites of the rth-order rectangle are visited (figure 5 ) .  
This gives a total of eleven variables. To describe open chains, we would need 17 
additional variables, making a total of 28 variables-a rather formidable number. 

Figure 5. Diagrams defining the weights A, A ,  and  A? for the modified rectangular lattice. 
The lower diagram corresponds to a term A"'B"'C"'D'" and  contributes to Cl"". 

However, as shown in 0 2 for the gasket, most of these variables are irrelevant and 
may be set equal to zero. This can be shown explicitly for the additional weights A\r), 
B(ir), . . . (d'Humikres 1985). Furthermore, except for calculating the susceptibility 
exponent y (which is not directly determinable by experiments) the analysis of closed 
polygons is sufficient, which requires only five variables A"), B ! r ) ,  C'", D'" and E''' 
(figure 4). 

In the case where attractive interactions are restricted to bonds within the first-order 
rectangle, the initial values of these weights are 

( A ,  B, c, D, E ) ! " =  (xz+x4w, x2+x4w, 2x3, x4w2, x4w2) (4.1 
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We determined numerically the critical value x,( w )  for which the recursion equations 
tend to a non-trivial fixed point and we studied the fixed points so obtained as a 
function of w. The full system of eleven equations was also studied. It gives different 
values for the transition points, but the structure of the phase diagram and the critical 
exponents are unchanged. The following behaviour is observed. 

(i) For weak attractions, w < wc= 3.2023 and x = x,( w),  the fixed point reached is 

1 1 -D*  '1' 

( A * ,  B*,  C*,  D*,  E * )  = (i' 2(1+ D*)' -(-) 2 1 + D* ,D* ,D*2)  

where D* is the smaller of the two positive real solutions of the equation 

D* = + 2 0 * 3 .  
4( 1 + D*)2 (4.7) 

Numerically D* = 0.190 24. This is the fixed point corresponding to the swollen phase 
of the polymer and linearised recursion equations near this point have only one relevant 
eigenvalue A = 1.683 94. This corresponds to 

v = log 212 log A ,  = 0.665 03 (4.8) 

the same exponent as in the case of no interaction ( w  = 1). 
( i i )  For large interactions w > w,, = 3.2341, one tends to an oscillatory fixed point 

characterised by vanishing values of A'", B'I', C'" and non-vanishing values of D'" 
and E'". The fixed point can be characterised by a parameter (Y which is a continuous 
function of w and is given by 

( O , O , O ,  f f lJ2,  1/2ff*)4+(0,0,0,1/J2ff, (Y2/2). 

This is thus a line of fixed points of period 2. Small perturbations around this solution 
are simpler to study if we iterate the recursion relations once. This has the effect of 
multiplying the lattice dimension by a factor 2 in both directions. Then each of the 
period-2 points becomes a simple fixed point. Linear analysis about any of these fixed 
points gives a relevant eigenvalue A ,  = 4, which corresponds to the collapsed phase 
with v = i. A second eigenvalue is marginal, A 2  = 1, corresponding to displacement 
along the line of fixed points. 

The period-2 nature of this fixed point shows that in this phase the horizontal and 
vertical directions are not equivalent and the average extents of the polymer in the 
two directions are not equal (though both vary as NI'', where N is the number of 
links in the chain). As w tends to w,, from above, a increases continuously to infinity 
and thus the anisotropy increases as we approach w,,. 

Between the swollen and collapsed phase, we do not find a standard collapse 
transition, but a more complicated behaviour. 

(iii) For w,, < w < w,,, one tends to the period-2 fixed points 

(1,0,0, 1,0)4+(0, 1, o,o, 1). 

It is easy to verify that in this case the largest eigenvalue of the linearised recursion 
relations is 2, corresponding to v = 1. Thus the polymer is in an extended 'rod-like' 
phase with the average end-to-end length proportional to N. The rapid convergence 
to zero observed for the two-point correlation function in the perpendicular direction 
implies that the average width of the polymer stays finite. 



Collapse transition of polymers on fractal lattices 207 

(iv) For w = w,,, the variables iterate to cycle-2 fixed points: 

(0.259 72; 0.944 75; 0.259 77; 0.018 86; 0.855 28) 

e(0.962 57; 0.134 93; 0.134 93; 0.924 82; 0.000 36). 

Linearising the once iterated recursion equations about any one of these two points, 
we find that there are two relevant eigenvalues, A ,  = 2.365 57 and A 2  -- 1.593 99. Analysis 
of thermodynamic quantities is as in the case of the 3D Sierpinski gasket. We get 
v -0.805 03 and the specific heat singularity exponent a = 0.153 27. Note that the 
value of v at this point is intermediate between those for the non-attractive and the 
'rod-like' phases. 

(v) I f  w = wc?, the behaviour of recursion equations is more complicated. Firstly, 
we have even-odd oscillations as in the previous three cases. Confining our attention 
to even iterates (the behaviour of odd iterates is determined by a simple recursion), 
we find the following behaviour to lowest order in r when r goes to infinity: 

. & 2 I l -  - 1 - 3 / 2 r + .  . . (4.9) 

(4.10) 

(4.11) 

(4.12) 

It is easy to verify that equations (4.9)-(4.12) are consistent with the iteration equations 
(4.2)-(4.6). Higher-order terms in a systematic expansion involve logarithms. 

If, instead of the variables D'" and E'" ,  we choose variables X ' "  = 4D'r '2E'r l  and  
Y'r '=  l / D ' r '  then the fixed point occurs for X * =  1, Y*=O. Eigenvalues of the 
linearised iterated renormalisation transformation near this point are 4, 2, 1. Thus at 
this point we have v = and the specific heat singularity exponent (Y = 0 (logarithmic 
singularity). 

Bl?rl = c 1 2 r i  - - 0  

D"" = r / 3 + .  . . 

E t Z r r  = 9/4r '+.  . . . 

5. Infinitesimal recursions 

The surprising feature of the calculations in the previous section is the existence of 
the intermediate rod-like phase. In this phase the average extent of the polymer in 
the two directions varies as different powers of N ( N '  and N o )  for large N. This is 
quite different from the usual behaviour of anisotropic systems where the correlation 
lengths in different directions have different amplitudes but diverge with the same 
exponent near criticality. Different exponents in different directions are known in 
systems with preferred orientation (directed percolation (Kinzel 1983)) or in systems 
at disorder points or at Lifschitz points (Hornreich 1980). Our problem is distinct 
from these and it is desirable to understand the origin of two correlation lengths in 
this system better. 

A possible origin for the strong anisotropy displayed in our case may be the 
asymmetry between the horizontal and vertical directions in the M R L .  There are more 
horizontal than vertical bonds on this lattice at any stage of iteration. It is, however, 
possible to eliminate this anisotropy in the M R L  by a formal device. We consider the 
generalised M R L  with arbitrary index p (figure 61, which retains the same fractal 
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Figure 6.  A graphical representation o f  the recursive construction of the modified rec- 
tangular lattice of index p. 

dimension Dr = 2. We obtain for the recursion equations, for any integer value of p ,  

A ’ =  E (  1 - D p ) / ( l  - D )  

B ’ + C ’ = ( A + C ) ”  

B ’ -  C’ = ( A  - C)” ( 5 . 3 )  

(5.4) 

E ’ =  D“. ( 5 . 5 )  

It is easy to verify that for p = 2 these equations reduce to equations (4.2)-(4.6).  
The case p = 3 has been discussed earlier in I. For larger values of p ,  the lattice becomes 
more and more anisotropic. These equations are continuous functions of p and we 
may formally continue them analytically for all real (positive) values and put p = 1 + E 

with E infinitesimal. Then, iterating these equations twice, we get a lattice whose linear 
extent is ( 1  + E )  times larger in both horizontal and vertical directions. The equations 
then become differential equations for the change in the weights with the length scale 
L. Simple algebra gives 

dA/d  log L =$[ (A+ C )  log(A + C )  + ( A  - C)  log(A - C ) ]  

- ( A E  l o g E ) / ( I - E )  

d B / d  log L = f [ ( B  + C )  log( B+ C )  + ( E  - C )  log( B - C ) ]  

- ( E D  log D ) / (  1 - D )  

d C / d  log L = i [ ( A  + C)  log ( A +  C )  - ( A  - C )  log(A - C )  

+ ( E  + C )  log( B + C )  - ( B  - C )  log( B - C ) ]  

d D / d  log L =  -A2[ 1 +( log  E ) / ( 1  - E  I ] / (  1 - E ) +  D( 1 +log D E )  

d E / d  log L = -E’[ 1 + (log D ) / (  1 - D ) ] /  ( 1 - D )  + E ( 1 +log DE ). 

( 5 . 7 )  

( 5 . 8 )  

(5.9) 

(5.10) 
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Note that i f  the starting system is symmetric in the horizontal and vertical directions, 
so that if A = B and D = E at some length scale L = Lo ,  then by equations (5.6)-(5.10) 
the system will remain symmetric under renormalisation. We have thus recovered the 
symmetry between x and  y directions in the recursion equations by the formal trick 
of letting p + 1. 

6. Analysis of the phase diagram for the infinitesimal recursions 

We now introduce anisotropic interactions in the two directions w, = w6 and w, = w3/ 6, 
where the parameter 6 measures the strength of the  anisotropy, with 0 = 1 corresponding 
to the isotropic system. The starting values of the weights ( A ,  B, C, D, E )  may then 
be taken as 

(x2+x4wB, x2+x4w/6,  2x3, x4w26-’, x4w26*) 

and the whole problem has a symmetry (6-1/0, A-B, D-E). 
The analysis of these equations gives us the following phase diagram for this 

problem (figure 7) .  
( i )  For w and 6 lying in region I and x equal to its critical value x,( MI, e), we tend 

to the non-trivial fixed point (0.455 194; 0.455 194; 0.420 751; 0.099 446; 0.099 446). 
Linearised renormalisation equations about this fixed point have only one relevant 
eigenvalue A = 1.51 14 .  . . . For infinitesimal recursions, one readily sees that v = 1 / A  
in general, so v = 0.6616 . . . here. This fixed point describes the swollen phase of the 
SAW. 

Figure 7. Schematic phase diagram given by the infinitesimal recursions (5.6)-(5.10): w is 
the mean interaction strength and 0 the anisotropy parameter i 0 = ( w , / w ,  i’ ’i. Region I 
corresponds to a swollen ( S A W )  phase,  regions I 1  and  111 to rod-like phases and  region 
IV  to a collapsed phase.  
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(ii) In  region IV, we find a line of fixed points describing the collapsed phase: 

(A* ,  B”, C*, D* ,  E )  = (O,O, 0, e-’”cy, e-’”/cy) 

where the parameter cy varies continuously with 0 and is equal to 1 for 0 = 1. Linearised 
renormalisation equations about this fixed point have one relevant eigenvalue 
A I  = 2 ( v  = l / D r =  4)  and a marginal operator (corresponding to anisotropy) with 
eigenvalue 0. 

(iii) Regime I1 is the region of attraction for the fixed point (0, l,O, 0, 1).  Again 
for this fixed point there is only one positive eigenvalue A ,  = 1, corresponding to v = 1, 
so it describes a rod-like phase. Regime 111 is obtained by symmetry, so the rods there 
are aligned in the other direction. 

(iv) For initial values of (w, 0 )  lying on the boundary between phase I and 11, the 
variables tend to the fixed point (0.193 59; 0.956 22; 0.193 56; 0.004 436; 0.902 48). This 
is a tricritical point, with two relevant eigenvalues: A ,  = 1.2463 and A2=0.671 999. At 
this boundary, the mean size of polymer varies as N”’ with v’=0.8024 and the specific 
heat singularity is given by cy = 2 - A l / A z  = 0.1454. 

(v )  The point w = ~ ~ ~ 3 . 1 7 8 2 ,  0 = 1, which is the common point on the boundaries 
of the four phases I, 11, 111 and IV, corresponds to the fixed point 

(0.394 95; 0.394 95; 0.261 64; 0.546 26; 0.546 26) 

This point is the analogue of the usual tricritical point found in studies of the collapse 
transition, but here it is a multicritical point where four eigenvalues of the linearised 
recursions are relevant. The largest one is A , = 1.8653 corresponding to vt = 0.5361 at 
this point. The next largest eigenvalue A 2  describes the rescaling of the interactions 
and  the corresponding value of the specific heat exponent cy is 0.204. The other two 
relevant eigenvalues are complex ( A  = 0.2402 5 0.250i) and are associated to the fact 
that anisotropy is a relevant operator at this point. 

(vi) The boundary between regions I 1  and IV is described by an  anisotropic 
tricritical point. The behaviour of variables A, B, C, D, E for large L in this case is 
quite similar to that in the case p = 2, except that there are more logarithmic correction 
terms. 

In detail: 

A ( L )  = 1 - 2/(e log L )  + . . . 
B ( L )  = C (  L )  = 0 

D ( L )  = 1/2 log L log(log L )  +.  . . 
E ( L ) = ( e  D ( L ) ) - ’ .  

The largest eigenvalue is A I  = 2 (i.e. v = i), as in the case p = 2. 
Notice that the critical exponents and the values of fixed points are not very different 

from the case p = 2. The insensitivity of the exponents to the value of p is an aposferiori 
justification of the formal analytic continuation in p .  

7. Approximate recursions with Green functions rescaling 

For p = 1 + E ,  we cannot give a graphical representation of the lattice. This is, however, 
a special limit of a class of planar lattices with rectangular symmetry and should imitate 
a two-dimensional square lattice. However, the value v, = 0.6616 should be compared 
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with the exact value known for the square lattice, and clearly the values are quite 
different. 

The reason for the difference is clear: our calculation is essentially a real space 
renormalisation group calculation which, while exact on fractals, cannot give correct 
results for two-dimensional systems unless we introduce 'spin rescaling' in the problem 
(Van Leeuwen 1975, Griffiths 1981). In two dimensions at the critical point, the 
two-point Green functions A, E, C are expected to vary as L-', and the four-point 
functions D and E as L-2' where x is some exponent which depends on the scaling 
power of the corner spin variables. 

However, on finitely ramified fractal lattices, these functions at the critical point 
go to a constant for large distances. In  order to obtain reasonable estimates of the 
exponents in two dimensions, we must devise a renormalisation prescription that allows 
power-law decay of the correlation functions at the critical point. This can be done 
approximately by rescaling the variables A ( L ) ,  B ( L ) ,  C ( L )  by a factor L" and D ( L )  
and E ( L )  by L2x,  after renormalisation by a scale factor L. The new equations will 
have fixed points ( A * ,  B*, . . .) so that the unscaled A ( L ) ,  B ( L )  . . . decay as A*L-', 
B*L-", .  . . for large L. Several different criteria may be chosen to determine the value 
of x within the renormalisation scheme and it is difficult to choose amongst them, so 
we prefer to treat it as a free parameter. 

This spin rescaling adds terms xA,  xB, xC, 2 x D  and 2xE to the right-hand sides 
of equations (5.7)-(5.10) respectively. For x = 0, we get no spin rescaling. For x = 1, 
the effect of rescaling may be interpreted as a Migdal-Kadanoff type bond-moving 
approximation in which the weight of a bond connecting two rth-order rectangles is 
~ 2 ' ' ~  instead of being simply x.  We consider for concreteness the case p = 2.  (Notice 
that the modified rectangular lattice can be obtained by a particular bond-moving 
transformation applied on the square lattice (as in Berker and Ostlund 1979) but then 
it is the interaction strengths and not the bond weights which are multiplied by the 
number of bonds moved.) Then the analogue of equation (4.3) for instance is 

and similar equations hold for the other variables. Redefining new variables 2'') = 
B(r)2''2 and similarly a and 6, we get the recursion equations with bond moving as 

(7.2) 
and similar equations for the other variables. These equations do not depend explicitly 
on r and show that this type of bond qoving is equivalent to spin rescaling with x = 1. 
At a non-trivial fixed point we have B( ' )  independent of r and B") decreases as the 
inverse of the size of the system. 

The general features of the phase diagram are not sensitive to the particular choice 
of x between 0 and 1, but the values of the exponents depend on x.  For x = 1, we get 
v = 0.687 56 for the pure SAW fixed point. For the tricritical point v, = 0.556 38 and 
the crossover exponent (c, = v,/ ~~ '0 .5418.  These values are close to the estimates 
obtained recently by a transfer matrix method on the square lattice, v,=0.55*0.01 
(Derrida and Saleur 1985) and (c, = 0.48*0.05 (Saleur 1985). 

(7.1) B ( r + I )  = 2 ' : 2 ( ~ 2 +  c2) 

j ( r + l ,  = 2 1 / 2 ( a 2 +  

8. Discussion 

The first important qualitative conclusion one may draw from our results is that a 
collapse transition exists on fractal lattices as soon as the connectivity is sufficient to 
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allow different parts of the polymer to come into close contact on every length scale. 
This is not the case for the ZD Sierpinski gasket, because once the chain has gone 
through an rth-order triangle i t  cannot cross i t  again (there is only one open vertex 
left), but transitions exist for the closely related 3~ Sierpinski gasket and for the 
modified rectangular lattice, where the four vertices are sufficient to allow two chain 
segments to live in the same rth-order unit. 

I t  should be emphasised that the behaviour of the polymers at these collapse 
transitions is very far from Gaussian: on fractal lattices, a purely random walk is 
described by an exponent vRW smaller than (Alexander and Orbach 1982, Rammal 
and Toulouse 1983), e.g. vRW = In 2/ ln  6 = 0.3869 for the 3~ Sierpinski gasket and 
vRW = for the family of modified rectangular lattices. Of course, a polymer cannot 
have a gyration radius exponent smaller than v, = 1/ Df= 4 for the lattices studied here, 
so Gaussian behaviour corresponds to a case in which any point of the walk is visited 
many times. The collapse transition corresponds to a new fixed point, intermediate 
between the SAW (swollen) phase and the collapsed phase, and  cannot be viewed as 
a perturbation of the Gaussian fixed point describing random walks. The case of ZD 
Euclidean lattices is in a sense degenerate, because vRW = v, = i, but the result for vt 
given by our infinitesimal recursions for spin rescaling (0 7 )  is very close to the numerical 
value obtained by Derrida and Saleur (1985) and this may indicate that the situation 
there is not so different from the fractals. We note that in our calculation the critical 
exponent vC of the polymer in the collapsed phase is obtained exactly, which was not 
the case in the calculation of Marquse and Deutch (1981). 

The rod-like phase found in our calculations raises several questions: its existence 
in a model with only excluded-volume and short-range attractive interactions is surpris- 
ing, even taking into account the slight overall anisotropy of the modified rectangular 
lattice. The possibility suggested by the infinitesimal recursions, that anisotropy in the 
interactions might be a relevant perturbation, is opposite to the conventional pictures. 
Usually, one argues that anisotropy effects can be absorbed into a redefinition of the 
length scales, so that the correlation functions keep the same qualitative dependence 
on system size-no phase transition is expected and the operator is marginal, as we 
find for the collapsed phase. This is verified in the exactly solved cases, i.e. the Ising 
model. To explain the coil to rod transitions experimentally observed (Lim et a1 1983), 
one usually invokes effective long-range interactions, e.g. mediated by phonons 
(Goldenfeld and Halley 1985). The situation in our models is quite different and  
clearly the lattice geometry plays a role in stabilising a rod-like phase, but the balance 
of effects is subtle. 

A useful comparison can be made with the behaviour of purely random walks. On 
Euclidean lattices, anisotropy of the jump probabilities is a marginal perturbation, in 
the sense that the walks just become elliptical. On fractal lattices, this problem is 
equivalent, through Einstein’s relation, to the conductivity of the lattice viewed as a 
network of resistors with anisotropic values. It can be shown that this anisotropy is 
irrelevant for the family of Sierpinski gaskets (Vannimenus and Knezevic 1984) and  
that the conductivity tensor asymptotically has a finite anisotropy for the modified 
rectangular p lattices, stable against small perturbations, so the operator is irrelevant 
(Knezevic 1985). In any case, anisotropy does not have a stronger effect for random 
walks on fractals than on regular lattices. 

A similar remark holds for polymers in the swollen phase, at least within the 
infinitesimal recursion relations studied above, since anisotropy is irrelevant at the 
SAW fixed point. It then seems reasonable to argue that the polymer chain will in 
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general be more sensitive to anisotropy in the vicinity of the collapse transition than in 
the other regions of the phase diagram. Whether anisotropy is relevant at the transition 
for Euclidean lattices is a delicate point which needs more investigation. 
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